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Thesis Abstract 

 

Sporadic Alzheimer’s disease (AD) is the most prevalent form of dementia in Australia and 
worldwide. Studies on the Familial form of AD have identified many of the molecular 
participants in the pathophysiology of AD; included in these is the Amyloid-β (Aβ) Precursor 
Protein (APP), which undergoes proteolytic processing to yield one of the pathological 
hallmarks of AD, Aβ. Another major hallmark of AD is hyper-phosphorylated, oligomerised Tau 
protein, which aggregates into Paired Helical Filaments (PHFs), which are then liable to form 
Neurofibrillary Tangles (NFTs). In this Thesis, we aimed to interrogate potential links between 
these two major contributors to AD in order to untangle the disease process.  

In order to extricate this pathological cascade, we consulted some of the risk factors 
associated with AD. Among some others, AD risk is heightened by impaired folate metabolism 
and elevated plasma homocysteine levels; these two conditions may arise through inadequate 
dietary consumption of folate and associated micronutrients, or genetic impairments in the 
processing of folate and methyl groups referred to as “One-Carbon Metabolism”. A major 
intracellular signalling mediator which is dependent on the proper cycling of one-carbon 
groups is the enzymatic family known as Protein Phosphatase 2A (PP2A). Methylated PP2A 
is widely recognised as the major Tau phosphatase, and deregulated PP2A enzymes have 
been found to co-exist in AD pathology with hyperphosphorylated Tau and degenerated brain 
regions most affected in AD. In vivo models of One-Carbon metabolism also show that Tau 
phosphorylation is also significantly elevated in the brain. In this study, we used the same 
model, mice with genetic deficiencies in the 5,10-methylenetetrahydrofolate reductase 
(MTHFR) enzyme, which were fed a normal folate or folate-deficient diet. We were able to 
show that the regulation of APP expression and post-translational modification is altered in 
major substructures on the brain, which helps affirm the link between a risk factor for AD 
(impaired folate metabolism), existing evidence for this risk in AD showing that PP2A and Tau 
are dysregulated in this model, and the perturbation of APP regulation. 

Since it is evidently a major enzyme deregulated in AD, we endeavoured here to tease apart 
how PP2A can be precisely controlled by post-translational modification in neurons. The two 
major post-translational modifications of PP2A are leucine methylation and tyrosine 
phosphorylation of the catalytic subunit.  

Currently, the only known source of the control of PP2A methylation arises from dietary supply 
of methyl groups, or One-Carbon metabolism, as briefly described above. Some groups have 
presented evidence suggesting that activation of cAMP signalling in non-neuronal cells affect 
the activity state of PP2A, while others show similar evidence for changes in PP2A methylation 
with the initiation of cAMP signalling. We thus deemed it necessary to delineate a more precise 
understanding of if, and how cAMP signalling affects PP2A methylation in neurons. To do this, 
we specifically investigated the activity and kinase targeting of cAMP-dependent protein 
kinase A (PKA) in cultured N2a cells. Indeed, we were able to show that activation of PKA 
with the cAMP-generating drug Forskolin led to time-sensitive demethylation of PP2A. We 
also observed that overexpression of the catalytic subunit of PP2A (PP2Ac) reduced the PKA-
targeted phosphorylation sites of Tau and the transcription factor CREB, which is heavily 
involved in learning and memory consolidation. We thereby demonstrate a novel mode of 
PP2A regulation with direct consequences for both AD pathogenesis and regulation of learning 
and memory.   

PKA-mediated changes in PP2A methylation appeared to have such important consequences, 
so we also used the MTHFR- and folate-deficient mouse models described above to 



investigate a major neural target of PKA and PP2A, CREB. We observed an interesting array 
of effects of disturbed One-Carbon metabolism on CREB expression and phosphorylation, 
which is linked to its transcription factor activity state. In the cortex and midbrain regions of 
mice with genetic deficiency of the MTHFR enzyme, CREB expression was altered, and CREB 
activity was elevated in the midbrain of these mice. Hence, in this thesis, we demonstrate that 
disturbed One-Carbon metabolism, which is related to multiple AD risk factors, dysregulates 
both APP and CREB, both of which are implicated in the AD process. These are linked through 
previous results from our lab showing that PP2A methylation and Tau phosphorylation are 
concurrently affected by this model in the same way they are dysregulated in AD pathology.   

In contrast to methylation of the catalytic subunit, tyrosine phosphorylation of PP2Ac was first 
reported to catalytically inactivate the enzyme. Unfortunately, these results have never been 
corroborated in vivo using independent methodologies. Since tyrosine phosphorylated PP2A 
has been reported to accumulate in close proximity to dystrophic neurites in AD, we deemed 
it important to substantiate the nature of PP2A tyrosine phosphorylation. If we could confirm 
that PP2A tyrosine phosphorylation and inactivation occurs in neurons, this may elucidate 
novel neurotoxic cascades in AD. In two distinct cell lines, we were able to show that the non-
receptor tyrosine kinase, Src indeed phosphorylates PP2A, but at two previously unidentified   
tyrosine sites. We also demonstrate that phosphorylation of one of these sites can impair the 
Tau phosphatase activity of PP2A in N2a cells.   

In the following body of work, we explore the importance of post-translational modifications of 
PP2A in the context of AD pathogenesis. Using cellular, in vivo and ex vivo techniques, we 
use this enzyme to navigate the role of dietary and genetic disturbances in the regulation of 
major proteins disturbed in AD, specifically Tau, APP and CREB. The novel findings we 
present provide the foundation for future study in the dysregulation of PP2A in memory 
disturbances and neurotoxicity in the molecular course of AD.  

 

 

  


